Systemic administration of a novel development candidate, MTL-CEBPA, upregulates the liverenriched transcription factor C/EBP- α and reverses CCI4-induced liver failure in vivo Reebye V¹, Voutila J², Huang K3,4, Muragundla A⁵, Jayaprakash A⁵, Vadnal P⁵, Huber H⁶, Habib R², Saetrom P^{7,8}, Rossi J⁹, Habib N^{1*} ^{*}Presenting author Department of Surgery, Imperial College London, UK ²MiNA Therapeutics Limited, London, UK ³Department of Surgery and Hepatitis Research Centre, National Taiwan University Hospital, Taiwan ⁴Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan ⁵Syngene International Ltd, Bangalore, India ⁶BioTD Strategies, LLC, Lansdale, PA, USA ⁷Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway ⁸Department of Computer and Information Science, Norwegian $^{^9 \}text{Department}$ of Molecular and Cellular Biology , Beckman Research Institute of the City of Hope, CA, USA # MTL-CEBPA upregulates C/EBP-α by transcriptional activation - Loading of saRNAs into Ago2 protein - 2. saRNA-Ago2 recruit transcription complexes - 3. Promoter remodelling - 4. Long lasting protein up-regulation ## C/EBP-α is an attractive target in liver disease ### C/EBP-α transcription factor - Master regulator - cell lineage determination - cell growth and proliferation - maintaince of metabolic balance and body weight homeostasis - Essential role in hepatocytes - differentiation - lipid and glucose homeostasis ### Rationale for upregulation in liver disease - Dysregulated in major liver diseases, including NAFLD, NASH, and HCC - Overexpression reduced fibrosis in mice - Up-regulating improved liver function in DEN model of cirrhosis and HCC in rats ## MTL-CEBPA dosed in CCI4 model of liver failure - ✓ Hepatic fatty infiltration - Fibrosis - Liver injury - Impaired liver function # MTL-CEBPA restores CEBPA mRNA in cirrhotic liver # MTL-CEBPA normalises liver hydroxyproline ### Reduced fibrosis and fatty infiltration in MTL-CEBPA treated animals at week 10 #### NOV340 + siFLUC #### **MTL-CEBPA** # MTL-CEBPA normalises serum bilirubin # MTL-CEBPA normalises serum albumin Pre treatment Week 8 # MTL-CEBPA normalises prothrombin time ## MTL-CEBPA attenuates hyperammonaemia ### **MTL-CEBPA** normalises serum AST ### **MTL-CEBPA** normalises serum ALT ### **MTL-CEBPA** normalises serum ALP ### MTL-CEBPA normalises body weight # Clinical track record of MTL-CEBPA liposomal formulation SMARTICLES #### MRX34 - Well tolerated at 110 mg/m2 in ongoing Phase I study in liver cancer and hematological malignancies - 9 mg/kg NOAEL identified in NHP toxicology study - Tumour regression in mouse model of HCC at 0.3 mg/kg ### ProNAi #### **PNT2258** - Anti-tumour activity at I20 mg/m2 in Phase II in non-Hodgkin's Lymphoma - Well tolerated in Phase I up to 150 mg/m2 # OUTReACH Phase 1 in HCC with impaired liver function | First patient in | ■ Q1 2016 | |------------------|---| | Design | Open label, First in Human dose escalation in cohorts of 3 patients | | Indications | Advanced tumour diseases with low serum albumin levels, characterised by
primary or secondary liver tumours | | Objectives | Primary: To determine the safety of administering MTL-CEBPA to patients with liver tumours and low serum albumin Secondary: To determine the RP2D; characterise the PK of MTL-CEBPA; characterise the PD of MTL-CEBPA; to increase serum albumin and/or decrease serum bilirubin | | Administration | 60min I.V. infusion QWx3 + I week rest (4 week cycle) | | UK centres | KING'S College London Imperial College London Imperial College University Figure 1 CAMBRIDGE | #### Conclusion - MiNA Therapeutics developing short activating RNA compounds to selectively up-regulate gene expression - MTL-CEBPA candidate targets CEBPA gene promoter for increased C/EBP-α expression - MTL-CEBPA reverses CCI4 induced liver failure in vivo - OUTREACH Phase I study initiating in Q1 2016