

Systemic administration of a novel development candidate, MTL-CEBPA, upregulates the liverenriched transcription factor C/EBP- α and reverses CCI4-induced liver failure in vivo

Reebye V¹, Voutila J², Huang K3,4, Muragundla A⁵, Jayaprakash A⁵, Vadnal P⁵, Huber H⁶, Habib R², Saetrom P^{7,8}, Rossi J⁹, Habib N^{1*}

^{*}Presenting author

Department of Surgery, Imperial College London, UK

²MiNA Therapeutics Limited, London, UK

³Department of Surgery and Hepatitis Research Centre, National Taiwan University Hospital, Taiwan

⁴Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan

⁵Syngene International Ltd, Bangalore, India

⁶BioTD Strategies, LLC, Lansdale, PA, USA

⁷Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway

⁸Department of Computer and Information Science, Norwegian

 $^{^9 \}text{Department}$ of Molecular and Cellular Biology , Beckman Research Institute of the City of Hope, CA, USA

MTL-CEBPA upregulates C/EBP-α by transcriptional activation

- Loading of saRNAs into Ago2 protein
- 2. saRNA-Ago2 recruit transcription complexes
- 3. Promoter remodelling
- 4. Long lasting protein up-regulation

C/EBP-α is an attractive target in liver disease

C/EBP-α transcription factor

- Master regulator
 - cell lineage determination
 - cell growth and proliferation
 - maintaince of metabolic balance and body weight homeostasis
- Essential role in hepatocytes
 - differentiation
 - lipid and glucose homeostasis

Rationale for upregulation in liver disease

- Dysregulated in major liver diseases, including NAFLD, NASH, and HCC
- Overexpression reduced fibrosis in mice
- Up-regulating improved liver function in DEN model of cirrhosis and HCC in rats

MTL-CEBPA dosed in CCI4 model of liver failure

- ✓ Hepatic fatty infiltration
- Fibrosis
- Liver injury
- Impaired liver function

MTL-CEBPA restores CEBPA mRNA in cirrhotic liver

MTL-CEBPA normalises liver hydroxyproline

Reduced fibrosis and fatty infiltration in MTL-CEBPA treated animals at week 10

NOV340 + siFLUC

MTL-CEBPA

MTL-CEBPA normalises serum bilirubin

MTL-CEBPA normalises serum albumin

Pre treatment Week 8

MTL-CEBPA normalises prothrombin time

MTL-CEBPA attenuates hyperammonaemia

MTL-CEBPA normalises serum AST

MTL-CEBPA normalises serum ALT

MTL-CEBPA normalises serum ALP

MTL-CEBPA normalises body weight

Clinical track record of MTL-CEBPA liposomal formulation SMARTICLES

MRX34

- Well tolerated at 110 mg/m2 in ongoing Phase I study in liver cancer and hematological malignancies
- 9 mg/kg NOAEL identified in NHP toxicology study
- Tumour regression in mouse model of HCC at 0.3 mg/kg

ProNAi

PNT2258

- Anti-tumour activity at I20 mg/m2 in Phase II in non-Hodgkin's Lymphoma
- Well tolerated in Phase I up to 150 mg/m2

OUTReACH Phase 1 in HCC with impaired liver function

First patient in	■ Q1 2016
Design	Open label, First in Human dose escalation in cohorts of 3 patients
Indications	 Advanced tumour diseases with low serum albumin levels, characterised by primary or secondary liver tumours
Objectives	 Primary: To determine the safety of administering MTL-CEBPA to patients with liver tumours and low serum albumin Secondary: To determine the RP2D; characterise the PK of MTL-CEBPA; characterise the PD of MTL-CEBPA; to increase serum albumin and/or decrease serum bilirubin
Administration	 60min I.V. infusion QWx3 + I week rest (4 week cycle)
UK centres	KING'S College London Imperial College London Imperial College University Figure 1 CAMBRIDGE

Conclusion

- MiNA Therapeutics developing short activating RNA compounds to selectively up-regulate gene expression
- MTL-CEBPA candidate targets CEBPA gene promoter for increased C/EBP-α expression
- MTL-CEBPA reverses CCI4 induced liver failure in vivo
- OUTREACH Phase I study initiating in Q1 2016

