The clinical candidate MTL-CEBPA leads to significant reduction in ascites and improvement in overall survival in a CCl4-induced liver failure model

Vikash Reebye1, Jon Voutilia2, David Blakey2, Robert Habib2, Onkaramurthy Mallappa3, Anjaneyulu Muragundla1, Aravindakshan Jayaprakash2, Hans E. Huber4, Pål Sætrom5, John Rossii6, Nagy Habib1
1Department of Surgery, Imperial College London, UK; MiNA Therapeutics, London, UK; 2Syngene International Ltd, Bangalore, India; 3BioT D Strategies, LLC, Lansdale, PA; 4Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; 5Molecular and Cellular Biology, Beckman Research Institute, City of Hope, CA

Small activating RNAs (saRNAs) are short double stranded oligonucleotides designed to up-regulate their target gene by transcriptional activation. Following transfection into cells the saRNA is loaded into Ago2 and translocates into the nucleus where it interacts specifically at the target gene leading to recruitment and activation of RNA Polymerase II (Portnoy et al, 2016; Kalantari et al, 2016). This leads to new messenger RNA production resulting in up-regulation of the target protein.

MTL-CEBPA is a liposomal formulation of a saRNA targeting for transcriptional up-regulation the transcription factor C/EBP-α (CCAT/enhancer-binding protein alpha), a master regulator in the liver. In pre-clinical models MTL-CEBPA has previously been shown to restore expression of CEBPA liver mRNA to normal levels and to reverse liver fibrosis and liver steatosis. MTL-CEBPA is currently in clinical development in patients with liver cancer (ClinicalTrials.gov – NCT02716012).

MTL-CEBPA reverses histological features of liver fibrosis at Week 13

MTL-CEBPA reverses markers of liver injury at Week 13

MTL-CEBPA restores normal liver function at Week 13

MTL-CEBPA attenuates hyper-ammonaemia up to Week 36

MTL-CEBPA improves Week 36 survival

Taking advantage of CEBPA’s known transcriptional activity, MTL-CEBPA is designed to target the gene directly using a transcription-activating oligonucleotide. This approach leads to increased expression of CEBPA in monocytes and fibroblasts in vitro and in the liver in preclinical models.

MTL-CEBPA has advanced into a clinical model, demonstrating significant improvement in ascites and liver function in a primate model of liver failure. These data support the clinical development of MTL-CEBPA as a therapeutic option for patients with liver failure.

REFERENCES

Kalantari R et al, Regulation of mammalian transcription and splicing by nuclear RNA. Nucleic Acids Research 44, 524-37, 2016

SUMMARY & CONCLUSIONS

In the 13 week model, two week treatment of MTL-CEBPA reversed histological features of liver fibrosis (Fig 1) as well as markers of liver injury (Fig 2). Treatment improved liver function as judged by a reduction in bilirubin to near normal levels and an increase in albumin (a target gene of C/EBP-α) (Fig 3).

Similar liver function benefits were seen in the 36 week model both during and beyond 14 week treatment with MTL-CEBPA. In addition MTL-CEBPA attenuated hyperammonaemia (Fig 5) and ameliorated ascites (Fig 6). Liver function benefits culminated in a significant improvement in survival (Fig 7).

Overall the data demonstrate in these pre-clinical models that saRNA to CEBPA delivered to the liver using a SMARTCLES® formulation can result in a very significant impact on both liver failure and survival.

Based on these results and also positive data in a liver cancer model (data not shown) MTL-CEBPA has advanced into a clinical trial in patients with liver cancer. The trial will look for evidence of improved liver function, aiming to validate clinically this exciting pre-clinical data in models of liver failure.