Regulation of C/EBPα Inhibits Suppressive Activity of Myeloid Cells and Potentiates Antitumor Response in Mice and Cancer Patients

Background

Transcriptional factors regulating the function of myeloid cells represent an attractive targeting opportunity because of their broad effect on the function of these cells. The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) is involved in differentiation of myeloid cells, red blood cell metabolism, and immunity. Deregelation of C/EBPα has been reported in several solid tumors including liver, breast, and lung. We have developed a first-in-class small activating RNA therapeutics comprising a SMARTICLES® liposomal nanoencapsulating CEBPα-S1, a 2′-O-Me RNA oligonucleotide duplex designed to specifically target and upregulate the transcription of the CEBPA gene. The mechanism of antitumor effect of MTL-CEBPA, as well as its possible effect in cancer patients remains unclear.

Mechanism of MTL-CEBPA Regulation in Myeloid Cells in Mice

Efficacy of MTL-CEBPA in combination with Sorafenib in Patients with Liver Cancer

Clinical activity of MTL-CEBPA in advanced HCC patients treated in combination with sorafenib.

Author Affiliation

- **MiNA Therapeutics**
- **National University Cancer Institute Singapore, Singapore**
- **Wistar Institute, Philadelphia, PA, US**
- **Therapeutics Ltd, London, UK**
- **HalioDx, Marseille, France**
- **University of Cambridge, Cambridge, UK**
- **Pan Colorectal Cancer Center, London, UK**
- **Lewis Cancer Institute, Birmingham, AL**
- **Department of Gastrointestinal and Medical Oncology, MD Anderson Cancer Center, Houston, TX**
- **National Cancer Center, Singapore, Singapore**
- **Institute of Molecular and Cell Biology, Bioinformatics Research Institute of Telecommunications Public Authority, Singapore**

#3128